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Abstract—A mathematical model is derived of a steady-state, two-phase, two-component adiabatic flow

consisting of water-steam-air under the condition of thermodynamic equilibrium. The idea is used of a

quasi-constant slip. An expression is found for the value of the critical mass flow rate. The program

CRITFLOW-2PH2C has been created based on the model. The given numerical examples illustrate the
applicability of the model to tubes with arbitrary length.

NOMENCLATURE

velocity of sound;

specific heat at constant pressure;
hydraulic diameter;

total differential ;

mass flow rate;

critical mass flow rate;

gravitational acceleration;

specific enthalpy ;

polytropic exponent;

pressure;;

thermal power supplied to a unit volume of
flow;

gas constants;

pressure loss per unit length due to friction ;
absolute temperature;

velocity ;

quality;

linear coordinate.

Greek symbols

a

void fraction ;

isentropic exponent;

eigenvalue ;

amount of generated steam per unit time
per unit volume of flow;

density ;

time;

angle between the upward directed vertical
and flow direction.

Subscripts and superscripts

L,

air;

steam;

water

saturated steam;
saturated water;

phase which yields mass;
constant pressure;
friction.

1. INTRODUCTION

WE HAVE reported [1] a model of a transient, 1-dim.,
two-phase, two-component flow consisting of water,
steam and air under the following assumptions:

(a)
(b)

(©)
(d)
()
U

(g)

equal pressure of the two phases;

the two components of the gas phase, air and
steam, obey Dalton’s law;

equal temperatures of the two phases;

equal velocities of the two phases;

in the presence of water the steam is always
saturated with respect to the corresponding
temperature of the system;

the air is assumed to be a single noncondens-
able ideal gas;

constant cross-section of the channel.

The system of four partial differential equations
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A =CE + D, 8)
by =}
-0 P (9)
P
pa® = CBJ/A + p,/a, (10)
p=alpp + py) + (1 — a)p; (11)
has the eigenvalues
A=Wl dza=w+ta (12-15)

where « is the velocity of sound. The critical mass flow
rate is equal to

G* = pa. (16)

When applying this model to the analysis of the
propagation of LOCA inside the rooms of a nuclear
power plant with water-cooled reactors, the question
often arises of determining the critical mass flow rate of
an inhomogeneous two-phase flow under the above
assumptions about the thermodynamic state of the
flow. The aim of the present work is to formulate such
a model for a critical inhomogeneous two-phase, two-
component flow consisting of water—steam—air at
thermodynamic equilibrium.

2. MODEL

We choose as dependent variables the pressure p, the
temperature T, the mass flow rate G, and the quality x.
In accordance with the assumptions made above in
Section 1, we use the equations of state given in
Appendix 1. From Dalton’s law it follows that

(a7

o = oy = Q.

We use the following system as the starting point of
our considerations:

d
— (apLwy) = 0, (18)
dz
d
i {app wy) = #, (19)
d
; [ = o()Pfo] =—H (20)
d dp
a[apgwli + (L —apw] + -
=—2;Z=[ap, + (1 —a)pclgcosp + R, (21)
dSL q;:,
22
ey, tdz T @2)
d "
g, 50 = L5 + wlho = WL @23)
ds¢
- g - pthe, — k)] (24
(1 a)Pfo dZ T de lu( ex f)] ( )

We note that no substantial terms in the steady-state
mass and momentum conservation equations
(18)-(21) are neglected. Further we introduce the
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following definitions for the relative mass flow rates for
gas x, air x;, and steam x,

x G = ap,w, 25)
XpG = appw,, (26)
(1 — X)G = (1 — J)waf-. (27)

in the two-phase flow. From these definitions the
following equations follow:

X =X + Xp, (28)
Xo = XPp/py (29)
Xy = XPL/py (30)

Making use of these definitions, we obtain the
following form for the system (18)—(24):

d
&(x,lo) =0, (31)
L (06 = 1. (32)
d
e (O O (33)
z
d Gy 2 97 _
F W+ =-2 (34)
d
xLGﬁ - ‘_’% (35)
dsp 1
xpG SD = [d5 + plho ~ hp)). (36)
ds, 1
a )GES_—‘ =~ ld" = uh =k}, G
where
b = Usfl (38)
vg = xv, + S(1 — X)y 39
fi=[1+x(5 - 1YS (40)
S = wy/w (41)

Summing up the three mass conservation equations
we get

dG/dz =0 or G = const. (42)

Using equation (42) and summing up the three
entropy conservation equations we get

deD -
d dp _dx @3)
dx z dz
Ga = U
dy, dp
20 T = Z 44
“E T @9
ds, dsy, ds¢
T{x — 1 —x)—
¢ |}L dz o dz ( X) dz
— qom _ u(hn _ hf)’ (45)
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X, = const. (46)
For an adiabatic flow
q" =0 7)
we obtain
dj{ﬂ = dl’ (48)
dz dz
de, dp
e A 49
& T a: “9)
ds dsp ds,
T[dezL + de—ZD +(1 - x)a;f}
dx
= - a—(h" — he). (50)
Z

We transform the momentum equation in the
following way

W _ 2z - 6767y (51)
dz
where
G** = — (dy/dp) " (52)

The calculation of dvy/dp is shown in Appendix 2.
After some transformations of equations (43) and (45)

d/ pp dx
(xR )=
dz\  p, dz

or
d (po)_ pudx
dz \ p, pg dz
or
dpp dpy dx
XL dz DE_pLa;a (53)
1
hy — b
U dsll
X {[xL <LPL + dep;?> + xpT d"l? +(1 - x)cpf:i
. CP J
dT TR, d dx
<4 _n4¢£}=—?, (54)
z po dz 2

after substituting the equation of state into equation
(53), and after solving with respect todT/dp and dx/dp,
we obtain

d_zz Xp 4 XL /dep’[’)
dp RT hp—h )/ dT

oL 1 dpp
+ xD(T YRT dT)

chp

+ [ hf:|’ (55)
dx

dT
~ (o — ¢, 50 )05 —
dp dp /|

(56)
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Let us now check equations (55) and (56) by
obtaining the known relations for the known limiting
cases. Thus for x, = 1, x, = 0 we obtain

dr 1

— = (57)
dp cppo

dx

— =0 58
dp (58)

and for x, = x, =0

dT

—— =0, 59
dp (39)
dx e dT (60)

dp hp—hedp’
These relations are well-known in the thermody-
namics of one-component fluids, for a one-component

adiabatic flow of air and a one-component adiabatic
flow of liquid water, respectively.

3. CRITICAL TWO-PHASE, TWO-COMPONENT,
INHOMOGENEQUS FLOW
Thus, the equilibrium steady-state, two-phase, two-
component, isentropic flow consisting of water, steam
and air is described in the inhomogeneous case by the
following system of ordinary non-linear differential
equations:

G = const., (42)
X, = const., (61)
Xp = XPp/Py (29)
dp =~ Z/1 — G¥G*?); Z =pgcosp + R
dz ; P9 @ s
(51)
T _dre O (2 +_xL_>/[x dob
dz dpdz’ dp \R.T  hy—h )| dT
+xp (5’% ¥ RiT i’?) h,:L_C"hJ (62). (55)
d_x _ gfdp Cdx
dz dpdz’ dp
= (xu/pL — ¢, dT/dp)/(hp, — k) (63). (56)
where
p=alp” + p) + (1 - a)p; (64)
Cp= XL <ch + v,_%) + xDTji;é + (1 = X)cy
(65)
If G = G*, we obtain dp = — =, i.e. we have a

critical flow. Equation (52) defines the local critical
mass flow rate. It should be noted that the assumption
we made for the adiabatic two-phase flow (¢ = 0)
does not imply that 4, = 0, ie. the gas phase
undergoes a polytropic change of state. This is shown
in Appendix 3.
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A simplified formula for dv,/dp is given in Appendix
3. Perhaps the assumption thatn ~ const. and that ‘the
gaseous mixture has the properties of an ideal gas’
might be considered a strong restriction. However in
practice with a discrete integration of the system (51),
(62), (63) along the tube, the use of (A3-9) without
using equation (62) speeds up calculations without
influencing the accuracy as compared with the direct
integration of (51), (62), (63). This is explained as
follows:

(1) the RHSs of the system (51), (62), (63) are kept
constant within one linear step Az during integration
by any method. This is equivalent to the assumption
that n ~ const;

(2) nisarelatively slowly changing quantity close to
unity and is calculated in each new point as a function
of the actual parameters of state.

4. SOME NUMERICAL EXAMPLES AND APPLICATION
OF THE METHOD

Thus, the system of differential equations (51), (62),
(63) together with the conditions (42), (61), (29), the
adequate empirical slip correlation [ 2], an appropriate
correlation for the loss of pressure due to friction [3],a
suitable set of approximations for the thermophysical
properties [4] and an integration procedure represent
a stationary model of a two-phase, two-component
flow with the already stated simplifying assumptions
for tubes with arbitrary dimensions and a constant
cross-section. If by varying G at the given initial
conditions (p, T, x) at the tube entrance we obtain dp
= — » at theexit, then the flow in the tube is a critical
one. The program CRITFLOW-2PH2C (Fortran 4,
IBM 370/145) is created based on this model. The
integration of the system (51), (62), (63) is done in the
program using Euler’s method with a step diminishing
in a geometrical progression. Some results from calcu-
lations with CRITFLOW-2PH2C are shown in Figs.
1-3. They illustrate the dependence of the critical mass
flow rate G on the most significant parameters. In all
the figures the critical mass flow rate G is shown as a
function of the quality x at the entrance of the tube and
a variable parameter shown in Table 1.

The examples from Figs. 1-3 illustrate the applica-
bility of the model to tubes of arbitrary length. This
model can be classified substantially by introducing a
noncondensable gas in the theory of the equilibrium
inhomogeneous two-phase flow with a quasi-constant
slip [5]. In the absence of steam, the model has the
properties characteristic of an inhomogeneous non-
equilibrium two-phase flow, concerning the critical

Table 1
Fig. 1 G = f(Pen» Xens Ten = const.  L/D = const.)
Fig. 2 G = f(T.n Xen Pen = CONSL., L/D = const.)
Fig. 3 G =f(L/D, x4, Pen = const,, T,, = const.)
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F1G. 1. The critical mass flow rate as a function of the quality
and pressure. L/D = 5,D = 0.5m, T,, = 372.78K.

mass flow rate. At small air content it has the
properties typical of an equilibrium inhomogeneous
two-phase flow.

This model has been successfully used in modelling
the critical and subcritical flows between particular
volumes of a NPS with a WWER during a LOCA.
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APPENDIX 1
_ P
PLERT
1 1 : 1 dp;
doy = g dn = AT = g - (4 TR ar
R.T T R.T T " RTdT
S
: 3 {AL-1)
(%) v+ Py
op ) dp
R, =287.1[Jkg" 'K '] (Al-2)
pp = pp(T) dpp, = %dT (A1-3, 4)
dT
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F16. 2. The critical mass flow rate as a function of the quality
and temperature. L/D = 5, D = 05m, p,, = 2 bar.

ope ape
= = T 4 2
pe=pdT, p}  dpy FrdT+ apdp
(A1-5, 6)
d »
Po=piT)  dpp=—2dT (AL 8)
a7
d
m=p—pb dp=dp~—2dT (AI9,10)
aT
Pg=pp+ PL

1 dpp, 1 dpy po

- ~ S Py
doy = g dr + (d'f RTAT T
Nt i —

(?&) (A1-11, 12)
14

d At
5= syT) dsp = é%‘}d’f (Al1-13, 14)
Cor
s =s(T, p} ds; = -5dT
T
ﬁpf Cpt N
{0} dp ~ EJT  (AL-15, 16)
oT ), T

¢
sp=5{T,p} dsy = —;.L‘ST

. Rydph R
—ﬁdme(ﬁ‘lﬁ+ L Pn)dTw-—‘idp (AL-17, 18)

PL T p dT P
APPENDIX 2
Since
y = pfp, T. x. § = const.), {A2-1)
() (B0 8w
dp \dp/rx \OT /p.dp  \Ox /,rdp

holds, where
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Fic. 3. The critical mass flow rate as a function of the quality
and relative length. 7, = 372.78K, p,, = Zbar, D = 0.5m.
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APPENDIX 3
Presenting equation {55) in the form {A3-1)
ar _n-1dp A3l
T {A3-1)
where
P xp X, dpp
#=41 — — U i,
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and assuming

n ~ const,

(A3-3)
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we obtain after integration or after differentiation

Defining the gas constant

n—1yn
L (f) (A3-4) dog _ %
T, (] dp np

following way:

R, = povyo/To (A3-5)
and assuming that the gas phase behaves as a perfect gas % = é[l + (S — 1)] {_ Xy + 81— x)[(@’i)
pv, = R,T (A3-6) P " %/
we get for equation (A3-4) + <$> nol I} + (v, — SUr)d—x}
T/, n p dp
v
Ui: = (p/po)'" (A3-7) + [xvg + S(I = x)ve] So1dx

EI;.

EQUILIBRE CRITIQUE DANS UN ECOULEMENT DIPHASIQUE A DEUX COMPOSANTS
VAPEUR-EAU-AIR

Résumé—Un modéle mathématique est construit pour un écoulement permanent, adiabatique, diphasique,

4 deux composants, soit eau-vapeur—air, sous les conditions d’un équilibre thermodynamique. On utilise

l'idée d’un glissement quasi-constant. On trouve une expression pour la valeur du débit massique critique. Le

programme CRITFLOW-2PH2C est basé sur ce modéle. Les exemples numériques donnés montrent
Papplicabilité du modéle aux tubes de longeuer arbitraire.

ZUR KRITISCHEN INHOMOGENEN GLEICHGEWICHTS-ZWEIPHASENSTROMUNG VON
WASSER-DAMPF-LUFT-GEMISCHEN

Zusammenfassung—Flir eine stationdre adiabate Zweiphasen-Zweikomponenten-Stromung von Wasser,

Dampf und Luft wird fiir thermodynamisches Gleichgewicht ein mathematisches Modell abgeleitet. Dabei

wird die Vorstellung eines quasi-konstanten Schlupfes benutzt. Fiir den Wert der kritischen Massenstrom-

dichte wird eine Beziehung gewonnen. Auf der Basis des Modells wurde das Programm CRITFLOW-

2PH2C entwickelt. Die angefiihrten numerischen Beispiele zeigen die Anwendbarkeit des Modells auf Rohre
willkiirlicher Lénge.

KPUTUUYECKOE TEYEHUE PABHOBECHOW HEOJHOPOJHOH JBYX®A3HOWN
JBYXKOMITOHEHTHON CMECH BOJSIHOW MAP-BO3J1YX

AnvoTaums—I[IpennoxeHa MartemMaTHyeckas MOMEJb CTALHOHADHOTO AaJHa0aTHYECKOTO TEYECHHUSA

AByx$a3HoH ABYXKOMIOHEHTHOM CMECH BOASHOTO Mapa M BO3AyXa B YCJIOBUSX TE€PMOJAKHAMMYECKOTO

paBHOBecHs. B ocHOBE MOJENH JIOKHT MOHATHE KBA3HIOCTOSHHOTO CKONbXeHHs. ITonyueno Beipaxke-

HMe /I ONpele/ieHHs BETHYHHbI KPHTHYECKOro Maccosoro pacxona. Ha ochose monenn paspaborana

nporpamma CRITFLOW-2PH2C. IlpoBeneHHbIC YMCEHHBIE DACYEThl CBUIACTEJILCTBYIOT O IIpH-
MEHMMOCTH MOJENH K TpyOaM mpoH3BOJILHOH JUTHHBL.

Using the last equation, equation (A2-2) can be written in the



