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Abstract-A mathematical model is derived of a steady-state, two-phase, two-component adiabatic flow 
consisting of water-steam-air under the condition of thermodynamic equilibrium. The idea is used of a 
quasi-constant slip. An expression is found for the value of the critical mass flow rate. The program 
CRITFLOW-2PH2C has been created based on the model. The given numerical examples illustrate the 

applicability of the model to tubes with arbitrary length. 
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NOMENCLATURE 1. INTRODUCTION 

velocity of sound ; 
specific heat at constant pressure; 
hydraulic diameter ; 
total differential ; 
mass flow rate ; 
critical mass flow rate; 
gravitational acceleration ; 
specific enthalpy ; 
polytropic exponent; 
pressure ; 
thermal power supplied to a unit volume of 
flow; 
gas constants ; 
pressure loss per unit length due to friction ; 
absolute temperature; 
velocity ; 
quality ; 
linear coordinate. 

WE HAVE reported [1] a model of a transient, l-dim., 

two-phase, two-component flow consisting of water, 
steam and air under the following assumptions: 

1: 
(e) 

(f) 

(8) 

The 

equal pressure of the two phases; 
the two components of the gas phase, air and 
steam, obey Dalton’s law; 

equal temperatures of the two phases; 
equal velocities of the two phases; 

in the presence of water the steam is always 
saturated with respect to the corresponding 
temperature of the system ; 
the air is assumed to be a single noncondens- 
able ideal gas ; 
constant cross-section of the channel. 

system of four partial differential equations 

(1) 

Greek symbols 

(7.9 void fraction ; 
6 isentropic exponent; 

4 eigenvalue ; 

P? amount of generated steam per unit time 

per unit volume of flow; 

P, density ; 
7, time ; 

cp? angle between the upward directed vertical 
and flow direction. 

Subscripts and superscripts 

L, air; 

D, steam ; 
f, water ; 
I, saturated steam ; 

saturated water; 

ex, phase which yields mass; 
constant pressure; 
friction. 

dW 

z+w 
?W 

?Z 

ap dP ~ + w z + pa2 g = c .‘I’) 
c7 A4 (2) 

+;z= -;; Z=pgcoscp+R, (3) 

(4) 

where 

C = PL (5) 
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A = CE + D. (8) 

h;; - h, pL 
B=.T-_- E, 

UD - L’( a 
(9) 

j’U2 = CBIA + pLla. 

P = @(Pii + P,.) + (1 - ah 

has the eigenvalues 

(10) 

(11) 

I, 1.2 = w; i,,, = w + u (12-15) 

where a is the velocity of sound. The critical mass flow 

rate is equal to 

G* = pa. (16) 

When applying this model to the analysis of the 
propagation of LOCA inside the rooms of a nuclear 

following definitions for the relative mass flow rates for 
gas X, air x,., and steam x,, 

x,G = CCP,W,, (25) 

x,G = a&w,, (26) 

(1 - X)G = (1 - x)p,w,. (27) 

in the two-phase flow. From these definitions the 
following equations follow: 

x = x,_ + XL)‘ G3) 

%I = W;;lP,, (29) 

XL = XIh.IPg. (30) 

Making use of these definitions, we obtain the 

following form for the system (18))(24) : 

power plant with water-cooled reactors, the question 
often arises of determining the critical mass flow rate of 
an inhomogeneous two-phase flow under the above 
assumptions about the thermodynamic state of the 
flow. The aim of the present work is to formulate such 
a model for a critical inhomogeneous two-phase, two- 

component flow consisting of water-steam-air at 
thermodynamic equilibrium. 

f (x,.G) = 0, 
z 

; (x,G) = I*> 

;[(l - x)G] = - /J, 

2. MODEL 

We choose as dependent variables the pressure p, the 
temperature T, the mass flow rate G, and the quality x. 
In accordance with the assumptions made above in 
Section 1, we use the equations of state given in 
Appendix 1. From Dalton’s law it follows that 

aL = ‘cto = a. (17) 

$(G'a,)+$= -Z, 

x G ds, _ $J 

L dz T' 

x,G z = ; [&’ + /@i,, - h;)], 

We use the following system as the starting point of 
(1 - x)G 2 = f [#’ - @,, - h,)], 

our considerations : 
where 

% (wLw,) = 0, 

L’, = OJ, 

(18) 
L’S = xu, + S(1 - x)L’r 

(19) 
.f; = [l + s(S - l)]/S 

s = w$wr 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(20) Summing up the three mass conservation equations 

we get 

$ [“PgWp2 + (1 - a%w:1 + g 
dG/dz = 0 or G = const. (42) 

Using equation (42) and summing up the three 

= - Z; Z = [app + (1 - cc)p,]g cos cp + R, (21) entropy conservation equations we get 

ds, 4;’ 
ap,w -=-, 

g dz T 

rpgw 
ds;; 1 
- = 

g dz 
$4’;; + P(h,, - &)I, (23) 

(1 - a)p,w, 2 = + [cj;” - p(h,, - hr)]. (24) 

We note that no substantial terms in the steady-state 
mass and momentum conservation equations 

(18)-(21) are neglected. Further we introduce the 

&+5z (44) 

1 
.,,, =4 - ~(h” - h,), (45) 
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X L = const. 

For an adiabatic flow 

.,I, 
4 0 = 

we obtain 

(46) 

(47) 

dx, _ dx 
dz dz’ 

&+3-z~ 
,, 

T 
[ 

x,d$+xu2+(l -x)2 
1 

(48) 

(49) 

dx 
= - z(h” - h,). (50) 

We transform the momentum equation in the 
following way 

dp 
-z 

dz 
- Z/(1 - G2/G*2) (51) 

where 

G*2 = - (dv,/dp))‘. (52) 

The calculation of dv,/dp is shown in Appendix 2. 

After some transformations of equations (43) and (45) 

or 

Or 

1 

h; - h, 

dp; dp, dx 
--x 

xL dz 
p= 

D dz 
PLG’ (53) 

x {[xL(cpL+.g)+xDTg+(l -.,,,,] 
L I 

c 
P 

dT TRL dp dx 
x--xl.P- = 

dz PL dz 1 -- 
dz ’ (54) 

after substituting the equation of state into equation 
(53), and after solving with respect to dT/dp and dx/dp, 

we obtain 

dT 

dp = 

Let us now check equations (55) and (56) by 

obtaining the known relations for the known limiting 
cases. Thus for xL = 1, xD = 0 we obtain 

dT 1 

dp - CpPL 
(57) 

dx 
p=O 
dp 

and for x,_ = xu = 0 

dT 
-_=O 
dp ’ 

(58) 

(59) 

dx cpr dT 

dp=---. h’;, - h, dp 
(60) 

These relations are well-known in the thermody- 
namics of one-component fluids, for a one-component 

adiabatic flow of air and a one-component adiabatic 
flow of liquid water, respectively. 

3. CRITICAL TWO-PHASE, TWO-COMPONENT, 
INHOMOGENEOUS FLOW 

Thus, the equilibrium steady-state, two-phase, two- 
component, isentropic flow consisting of water, steam 
and air is described in the inhomogeneous case by the 
following system of ordinary non-linear differential 
equations : 

G = const., (42) 

xL = const., (61) 

xD = xdi/P,, (29) 

dp PC 
dz 

- Z/(1 - G2/G**); Z = pgcoscp + R, 

(51) 

dT dTdp dT 
-=--._= 
dz dp dz ’ dp 

+ XD pL F+&g)+&] (62).(55) 

dx dxdp dx 

dz dp dz ’ dp 

= (X,/P,_ - c,dTldp)l(h;; - hr) (63). (56) 

where 

P = 4~” + pL) + (1 - a)p, (64) 

c,=x,(i,,+v,~!+x,T~+(l -x)cpf. 

(65) 

If G = G*, we obtain dp = - X, i.e. we have a 

critical flow. Equation (52) defines the local critical 
mass flow rate. It should be noted that the assumption 
we made for the adiabatic two-phase flow (4”’ = 0) 
does not imply that 4”,” = 0, i.e. the gas phase 
undergoes a polytropic change of state. This is shown 
in Appendix 3. 
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A simplified formula for dv,/dp is given in Appendix 
3. Perhaps the assumption that n - const. and that ‘the 
gaseous mixture has the properties of an ideal gas’ 
might be considered a strong restriction. However in 
practice with a discrete integration of the system (51), 

(62), (63) along the tube, the use of (A339) without 

using equation (62) speeds up calculations without 
influencing the accuracy as compared with the direct 
integration of (51) (62) (63). This is explained as 
follows : 

I04 - 

CRITFLOW -2PH2C- 

(1) the RHSs of the system (51) (62) (63) are kept 
constant within one linear step AZ during integration 

by any method. This is equivalent to the assumption 
that n - const; 

(2) n is a relatively slowly changing quantity close to 
unity and is calculated in each new point as a function 
of the actual parameters of state. 

4. SOME NUMERICAL EXAMPLES AND APPLICATION 
OF THE METHOD 

Thus, the system of differential equations (51) (62) 

(63) together with the conditions (42) (61) (29) the 
adequate empirical slipcorrelation [2], an appropriate 
correlation for the loss of pressure due to friction [3], a 
suitable set of approximations for the thermophysical 
properties [4] and an integration procedure represent 
a stationary model of a two-phase, two-component 
flow with the already stated simplifying assumptions 

for tubes with arbitrary dimensions and a constant 
cross-section. If by varying G at the given initial 
conditions (p, T, x) at the tube entrance we obtain dp 
= - x at the exit, then the flow in the tube is a critical 
one. The program CRITFLOW-2PH2C (Fortran 4, 
IBM 370/145) is created based on this model. The 
integration of the system (51), (62) (63) is done in the 
program using Euler’s method with a step diminishing 
in a geometrical progression. Some results from calcu- 
lations with CRITFLOW-2PH2C are shown in Figs. 
l-3. They illustrate the dependence of the critical mass 
how rate G on the most significant parameters. In all 

the figures the critical mass flow rate G is shown as a 
function of the quality x at the entrance of the tube and 
a variable parameter shown in Table 1. 

The examples from Figs. l-3 illustrate the applica- 

bility of the model to tubes of arbitrary length. This 

model can be classified substantially by introducing a 
noncondensable gas in the theory of the equilibrium 
inhomogeneous two-phase flow with a quasi-constant 
slip [5]. In the absence of steam, the model has the 
properties characteristic of an inhomogeneous non- 
equilibrium two-phase flow, concerning the critical 

Table 1 

Fig. 1 G =f(p,,, x,,, T,, = const. L/D = const.) 

Fig. 2 G =f(T,,, x,,, p,, = const., L/D = const.) 

Fig. 3 G =f(L/D, x,,, p,, = const., T,, = const.) 

FIG. 1. The critical mass flow rate as a function of the quality 
and pressure. L/D = 5, D = 0.5 m, T,, = 372.78 K. 

mass flow rate. At small air content it has the 
properties typical of an equilibrium inhomogeneous 
two-phase flow. 

This model has been successfully used in modelling 
the critical and subcritical flows between particular 
volumes of a NPS with a WWER during a LOCA. 

REFERENCES 

N. I. Kolev, Transient two-phase two-component 
waterrsteam-air flow, Nucl. Sci. Engng, to be published 
(1982). 
J. A. Holmes, Description of the drift flux model in the 
LOCA code RELAP-UK, Heat and Fluid Flow in Water 
Reactor Safety, Manchester, 13-15 September (1977). 
M. R. Matausek, SINOD-A nonlinear lumped parameter 
model for steady-state, transient, and stability analysis of 
two-phase flow in natural circulation boiling water loops, 
Nucf. Sci. Engng p. 44C-457 (1977). 
S. A. Rivkin and E. A. Kremnyovskaya, Water and steam 
state equations for computer calculations of the processes 
in electric power plant equipment, Teploenergetika NO. 3, 
69-73 (1977). 
N. I. Kolev, Kritische nichthomogene Zweiphasen 
Gleichgewichtsstromung mit quasikonstantem Schlupf, 
Atomkernenergie 37, 284-288 (1981). 

APPENDIX 1 

PL 

dp,=&dp,+d7=&dp- 
L & 

aPr (Al-l) 
-ddp 
dP 

R, = 287.1 [Jkg-‘K-‘1 (Al-2) 

0 

PU = p;;(T) dp, = %dT (Al-3, 4) 
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FIG. 2. The critical mass flow rate as a function of the quality 
and temperature. L/D = 5, D = 0.5 m, pen = 2 bar. 

pf = pr(T, p) dp, = $;dT + !$dp 

(Al-S, 6) 

PO = P:(T) dg, = d$dT (Al-7, 8) 

FL = P - P& dp’dT (AI-9, 10) dPi. = dP - z 

Pg = Pb + PL 

(At-$1, ia 

14) 

w FdT (Al-15, 16) 

sL = sL(T, pf “’ dT ds, = r 

-%,,zt++s)dT-&dp (AL17,i8) 
PL 

APPENDIX 2 

Sin&c 

q = u,fp, T, x, S = const.), (AZ-i? 

2 = @>,.,, + ($$!,,,$ -t- EjP,r$ (AZ-2) 

holds. where 

5 
0 

x 

Frc. 3. The critical mass Row rate as a function of the quality 
and retative length. Tim = 372.78 K, pen = 2 bar, D = 0.5 m. 

(A2-3) 

(A2-4) 

(A2-5) 

(A2-6) 

(A&7) 

d& 1 h;; - it” 

d T T tl” - o I” 
=fiT). (AZ-8) 

APPENDIX 3 

Presenting equation (55) in the form {A3-ff 

dT n-Idp -=-- 
T nP 

(A3-f f 

where 

and assuming 

n - const. (AJ-3) 
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we obtain after integration or after differentiation 

Defining the gas constant 

R, = POQJTO 

(A3-4) dvp_ 2 
dp - - np’ 

(A3-8) 

Using the last equation, equation (A2-2) can be written in the 

(A3-5) 
following way : 

and assuming that the gas phase behaves as a perfect gas 

pv, = R,T (A3-6) 

we get for equation (A3-4) 

? = (p/p())“” 
Y 

(A3-7) S - 1 dr 
+ [x0, + S(l - x,l+] ~ - 

S dp’ 

EQUILIBRE CRITIQUE DANS UN ECOULEMENT DIPHASIQUE A DEUX COMPOSANTS 
VAPEUR-EAUPAIR 

RCsumi-Un moddle mathimatique est construit pour un tcoulement permanent, adiabatique, diphasique, 
B deux composants, soit eau-vapeur-air, sous les conditions d’un Cquilibre thermodynamique. On utilise 
l’id6e d’un glissement quasi-constant. On trouve une expression pour la valeur du debit massique critique. Le 
programme CRITFLOW-2PH2C est bast sur ce moddle. Les exemples numkriques donnCs montrent 

l’applicabilitt du moddle aux tubes de longeuer arbitraire. 

ZUR KRITISCHEN INHOMOGENEN GLEICHGEWICHTS-ZWEIPHASENSTRC)MUNG VON 
WASSER-DAMPF-LUFT-GEMISCHEN 

Zusammenfassung-Fiir eine stationdre adiabate Zweiphasen-Zweikomponenten-Str8mung von Wasser, 
Dampf und Luft wird fiir thermodynamisches Gleichgewicht ein mathematisches Model1 abgeleitet. Dabei 
wird die Vorstellung eines quasi-konstanten Schlupfes benutzt. Fiir den Wert der kritischen Massenstrom- 
dichte wird eine Beziehung gewonnen. Auf der Basis des Modells wurde das Programm CRITFLOW- 
2PH2C entwickelt. Die angefiihrten numerischen Beispiele zeigen die Anwendbarkeit des Modells auf Rohre 

willkiirlicher LPnge. 

KPMTH’JECKOE TEgEHME PABHOBECHOfl HEOAHOPOflHOfi ABYX@A3HOCi 
jJBYXKOMIIOHEHTHOti CMECM BOAIIHOn I-IAP-B03AYX 

AIiHoTauwn-IIpemomeHa MaTeMaTHqecKaR Monenb cTauaoHapHor0 aAIiaGaTHqecKor0 Teqemia 

nByX$a3HOii nByXKOMnOHeHTHOti CMeCA BOAaHOrO napa U BO3AyXa B yCJIOBHflX TepMOfiktHaMH’ieCKOrO 
paBHOaeCHK. B OCHOBe MOneJIA JIemllT nOHIITl(e KBa3HnOCTORHHOr0 CKOJIbmeHHR. nOJIy’IeH0 BbIpa%e- 

HHe AJIR 0npeneneHwn BeJIA’IliHbI KpHTEiqeCKoro MaCCOBOrO pacxona. Ha OCHOBe MOneJIA pa3pa60TaHa 
nporpaMMa CRITFLOW-2PHZC. npoBeneHHbIe YUCneHHbIe pacreTbI CBAAeTenbCTByIOT 0 IlpA- 

MeHIiMOCTU MOfleJIH K Tpy6aM npOA3BOJIbHOii NIHHbI. 

(A3-9) 


